ПРИЛОЖЕНИЕ К ООП ООО МБОУ «КОТЕЛЬСКАЯ СОШ»

Утверждено приказом № 72от 30.08.2023г

Рабочая программа по учебному курсу «Информатика» 8-9 класс

п. Котельский2023 год

1. Планируемые результаты

Личностные, метапредметные и предметные результаты освоения курса ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

Личностные результаты отражают готовность и способность обучающихся руководствоваться сформированной внутренней позицией личности, системой ценностных ориентаций, позитивных внутренних убеждений, соответствующих традиционным ценностям российского общества, расширение жизненного опыта и опыта деятельности в процессе реализации средствами учебного предмета основных направлений воспитательной деятельности. В результате изучения информатики на уровне среднего общего образования у обучающегося будут сформированы следующие личностные результаты:

1) гражданского воспитания:

осознание своих конституционных прав и обязанностей, уважение закона и правопорядка, соблюдение основополагающих норм информационного права и информационной безопасности; готовность противостоять идеологии экстремизма, национализма, ксенофобии, дискриминации по социальным, религиозным, расовым, национальным признакам в виртуальном пространстве;

2) патриотического воспитания:

ценностное отношение к историческому наследию, достижениям России в науке, искусстве, технологиях, понимание значения информатики как науки в жизни современного общества;

3) духовно-нравственного воспитания:

сформированность нравственного сознания, этического поведения;

способность оценивать ситуацию и принимать осознанные решения, ориентируясь на моральнонравственные нормы и ценности, в том числе в сети Интернет;

4) эстетического воспитания:

эстетическое отношение к миру, включая эстетику научного и технического творчества; способность воспринимать различные виды искусства, в том числе основанные на использовании информационных технологий;

5) физического воспитания:

сформированность здорового и безопасного образа жизни, ответственного отношения к своему здоровью, в том числе и за счёт соблюдения требований безопасной эксплуатации средств информационных и коммуникационных технологий;

6) трудового воспитания:

готовность к активной деятельности технологической и социальной направленности, способность инициировать, планировать и самостоятельно выполнять такую деятельность;

интерес к сферам профессиональной деятельности, связанным с информатикой, программированием и информационными технологиями, основанными на достижениях информатики и научно-технического прогресса, умение совершать осознанный выбор будущей профессии и реализовывать собственные жизненные планы;

готовность и способность к образованию и самообразованию на протяжении всей жизни;

7) экологического воспитания:

осознание глобального характера экологических проблем и путей их решения, в том числе с учётом возможностей информационно-коммуникационных технологий;

8) ценности научного познания:

сформированность мировоззрения, соответствующего современному уровню развития информатики, достижениям научно-технического прогресса и общественной практики, за счёт понимания роли информационных ресурсов, информационных процессов и информационных технологий в условиях цифровой трансформации многих сфер жизни современного общества; осознание ценности научной деятельности, готовность осуществлять проектную и

исследовательскую деятельность индивидуально и в группе.

В процессе достижения личностных результатов освоения программы по информатике у обучающихся совершенствуется эмоциональный интеллект, предполагающий сформированность: саморегулирования, включающего самоконтроль, умение принимать ответственность за своё поведение, способность адаптироваться к эмоциональным изменениям и проявлять гибкость, быть открытым новому;

внутренней мотивации, включающей стремление к достижению цели и успеху, оптимизм, инициативность, умение действовать исходя из своих возможностей;

эмпатии, включающей способность понимать эмоциональное состояние других, учитывать его при осуществлении коммуникации, способность к сочувствию и сопереживанию;

социальных навыков, включающих способность выстраивать отношения с другими людьми, заботиться, проявлять интерес и разрешать конфликты.

1. МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

В результате изучения информатики на уровне среднего общего образования у обучающегося будут сформированы метапредметные результаты, отражённые в универсальных учебных действиях, а именно: познавательные универсальные учебные действия, коммуникативные универсальные учебные действия, совместная деятельность.

Познавательные универсальные учебные действия

1) базовые логические действия:

самостоятельно формулировать и актуализировать проблему, рассматривать её всесторонне; устанавливать существенный признак или основания для сравнения, классификации и обобщения; определять цели деятельности, задавать параметры и критерии их достижения;

выявлять закономерности и противоречия в рассматриваемых явлениях;

разрабатывать план решения проблемы с учётом анализа имеющихся материальных и нематериальных ресурсов;

вносить коррективы в деятельность, оценивать соответствие результатов целям, оценивать риски последствий деятельности;

координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;

развивать креативное мышление при решении жизненных проблем.

2) базовые исследовательские действия:

владеть навыками учебно-исследовательской и проектной деятельности, навыками разрешения проблем, способностью и готовностью к самостоятельному поиску методов решения практических задач, применению различных методов познания;

овладеть видами деятельности по получению нового знания, его интерпретации, преобразованию и применению в различных учебных ситуациях, в том числе при создании учебных и социальных проектов;

формирование научного типа мышления, владение научной терминологией, ключевыми понятиями и методами;

ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;

выявлять причинно-следственные связи и актуализировать задачу, выдвигать гипотезу её решения, находить аргументы для доказательства своих утверждений, задавать параметры и критерии решения;

анализировать полученные в ходе решения задачи результаты, критически оценивать их достоверность, прогнозировать изменение в новых условиях;

давать оценку новым ситуациям, оценивать приобретённый опыт;

осуществлять целенаправленный поиск переноса средств и способов действия в профессиональную среду;

переносить знания в познавательную и практическую области жизнедеятельности; интегрировать знания из разных предметных областей;

выдвигать новые идеи, предлагать оригинальные подходы и решения, ставить проблемы и задачи, допускающие альтернативные решения.

3) работа с информацией:

владеть навыками получения информации из источников разных типов, самостоятельно осуществлять поиск, анализ, систематизацию и интерпретацию информации различных видов и форм представления;

создавать тексты в различных форматах с учётом назначения информации и целевой аудитории, выбирая оптимальную форму представления и визуализации;

оценивать достоверность, легитимность информации, её соответствие правовым и моральноэтическим нормам;

использовать средства информационных и коммуникационных технологий в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;

владеть навыками распознавания и защиты информации, информационной безопасности личности.

Коммуникативные универсальные учебные действия

1) общение:

осуществлять коммуникации во всех сферах жизни;

распознавать невербальные средства общения, понимать значение социальных знаков, распознавать предпосылки конфликтных ситуаций и уметь смягчать конфликты;

владеть различными способами общения и взаимодействия, аргументированно вести диалог; развёрнуто и логично излагать свою точку зрения.

2) совместная деятельность:

понимать и использовать преимущества командной и индивидуальной работы;

выбирать тематику и методы совместных действий с учётом общих интересов и возможностей каждого члена коллектива;

принимать цели совместной деятельности, организовывать и координировать действия по её достижению: составлять

план действий, распределять роли с учётом мнений участников, обсуждать результаты совместной работы;

оценивать качество своего вклада и каждого участника команды в общий результат по разработанным критериям;

предлагать новые проекты, оценивать идеи с позиции новизны, оригинальности, практической значимости;

осуществлять позитивное стратегическое поведение в различных ситуациях, проявлять творчество и воображение, быть инициативным.

Регулятивные универсальные учебные действия

1) самоорганизация:

самостоятельно осуществлять познавательную деятельность, выявлять проблемы, ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;

самостоятельно составлять план решения проблемы с учётом имеющихся ресурсов, собственных возможностей и предпочтений;

давать оценку новым ситуациям;

расширять рамки учебного предмета на основе личных предпочтений;

делать осознанный выбор, аргументировать его, брать ответственность за решение;

оценивать приобретённый опыт;

способствовать формированию и проявлению широкой эрудиции в разных областях знаний, постоянно повышать свой образовательный и культурный уровень.

2) самоконтроль:

давать оценку новым ситуациям, вносить коррективы в деятельность, оценивать соответствие результатов целям;

владеть навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований; использовать приёмы рефлексии для оценки ситуации, выбора верного решения;

оценивать риски и своевременно принимать решения по их снижению; принимать мотивы и аргументы других при анализе результатов деятельности.

3) принятия себя и других:

принимать себя, понимая свои недостатки и достоинства; принимать мотивы и аргументы других при анализе результатов деятельности; признавать своё право и право других на ошибку; развивать способность понимать мир с позиции другого человека.

2. Планируемые предметные результаты

На уровне среднего общего образования в соответствии с ФГОС СОО на базовом уровне существуют две группы результатов «Выпускник научится» и «Выпускник получит возможность научиться». Группа результатов «Выпускник научится» представляет собой результаты, достижение которых обеспечивается учителем в отношении всех обучающихся, выбравших данный уровень обучения. Группа результатов «Выпускник получит возможность научиться» обеспечивается учителем в отношении части наиболее мотивированных и способных обучающихся, выбравших данный уровень обучения. При контроле качества образования группа заданий, ориентированных на оценку достижения

планируемых результатов из блока «Выпускник получит возможность научиться», может включаться в материалы блока «Выпускник научится». Это позволит предоставитьвозможность обучающимся продемонстрировать овладение качественно иным уровнемдостижений и выявлять динамику роста численности наиболее подготовленныхобучающихся. Принципиальным отличием результатов базового уровня от результатовуглубленного уровня является их целевая направленность. Результаты базового уровняориентированы на общую функциональную грамотность, получение компетентностей дляповседневной жизни и общего развития. Эта группа результатов предполагает:

- понимание предмета, ключевых вопросов и основных составляющих элементов изучаемой предметной области, что обеспечивается не за счет заучивания определений и правил, а посредством моделирования и постановки проблемных вопросов культуры, характерных для данной предметной области; умение решать основные практические задачи, характерные для использования методов и инструментария данной предметной области;
- осознание рамок изучаемой предметной области, ограниченности методов и инструментов, типичных связей с некоторыми другими областями знания.

Предметные результаты включают в себя: освоенные обучающимися в ходе изучения учебного предмета умения специфические для данной предметной области, виды деятельности по получению нового знания в рамках учебного предмета, его преобразованию и применению в учебных, учебно-проектных и социально-проектных ситуациях, формирование научного типа мышления, научных представлений о ключевых теориях, типах и видах отношений, владение научной терминологией, ключевыми понятиями, методами и приемами. В соответствии с федеральным государственным образовательным стандартом общего образования основные предметные результаты изучения информатики в основной школе отражают:

- формирование информационной и алгоритмической культуры; формирование представления о компьютере как универсальном устройстве обработки информации; развитие основных навыков и умений использования компьютерных устройств;
- \bullet формирование представления об основных изучаемых понятиях: информация, алгоритм, модель и их свойствах;
- развитие алгоритмического мышления, необходимого для профессиональной деятельности в современном обществе; развитие умений составить и записать алгоритм для конкретного исполнителя; формирование знаний об алгоритмических конструкциях, логических значениях и операциях; знакомство с

одним из языков программирования и основными алгоритмическими структурами — линейной, условной и циклической;

- формирование умений формализации и структурирования информации, умения выбирать способ представления данных в соответствии с поставленной задачей таблицы, схемы, графики, диаграммы, с использованием соответствующих программных средств обработки данных;
- формирование навыков и умений безопасного и целесообразного поведения при работе с компьютерными программами и в Интернете, умения соблюдать нормы информационной этики и права.

Планируемые предметные результаты изучения учебного предмета (классам)

8 класс

В результате изучения информатики в 8 классе ученик научится:

- понимать сущность понятий «система счисления», «позиционная система счисления», «алфавит системы счисления», «основание системы счисления»;
- записывать в двоичной системе целые числа от 0 до 1024;
- переводить заданное натуральное число из двоичной системы счисления в десятичную;
- складывать небольшие числа в двоичной системе счисления;
- понимать сущность понятия «высказывание», сущность операций И (конъюнкция), ИЛИ (дизъюнкция), НЕ (отрицание);
- составлять логические выражения с операциями И, ИЛИ, НЕ и скобок; определять значение логического выражения;
- понимать смысл понятий «алгоритм», «исполнитель», «программа»;
- понимать смысл понятий «формальный исполнитель», «среда исполнителя», «система команд исполнителя»;
- выражать алгоритм решения задачи различными способами (словесным, графическим, в том числе и в виде блок-схемы, с помощью формальных языков);
- определять результат выполнения заданного алгоритма или его фрагмента;
- выполнять несложные алгоритмы управления исполнителем Робот, Чертежник и др.;
- составлять несложные алгоритмы управления исполнителем Робот, Чертежник и др.;
- выполнять без использования компьютера несложные алгоритмы обработки числовых данных, записанные на конкретном языке программирования с использованием основных управляющих конструкций последовательного программирования (линейная программа, ветвление, повторение, вспомогательные алгоритмы);
- использовать величины (переменные) разных типов, а также выражения, составленные из этих величин; использовать оператор присваивания;
- записывать на изучаемом языке программирования (Паскаль, школьный алгоритмический язык) алгоритмы решения задач анализа данных.

В результате изучения информатики в 8 классе ученик получит возможность:

- научиться записывать целые числа от 0 до 1024 в восьмеричной и шестнадцатеричной системе; осуществлять перевод целых восьмеричных и шестнадцатеричных чисел в десятичную систему счисления;
- овладеть двоичной арифметикой;
- научиться решать логические задачи и с использованием таблиц истинности;
- познакомиться с законами алгебры логики;
- научиться решать логические задачи путем составления логических выражений и их преобразования с использованием основных свойств логических операций;
- исполнять алгоритмы, содержащие ветвления и повторения, для формального исполнителя с заданной системой команд;
- составлять все возможные алгоритмы фиксированной длины для формального исполнителя с заданной системой команд;

- определять количество линейных алгоритмов, обеспечивающих решение поставленной задачи, которые могут быть составлены для формального исполнителя с заданной системой команд;
- подсчитывать количество тех или иных символов в цепочке символов, являющейся результатом работы алгоритма;
- по данному алгоритму определять, для решения какой задачи он предназначен;
- разрабатывать в среде формального исполнителя короткие алгоритмы, содержащие базовые алгоритмические конструкции;
- разрабатывать и записывать на языке программирования эффективные алгоритмы, содержащие базовые алгоритмические конструкции.
- закрепить представления о требованиях техники безопасности, гигиены, эргономики и ресурсосбережения при работе со средствами информационных и коммуникационных технологий.

9 класс

В результате изучения информатики в 9 классе ученик научится:

- оценивать адекватность модели моделируемому объекту и целям моделирования;
- строить простые информационные модели объектов и процессов из различных предметных областей с использованием типовых средств (таблиц, графиков, диаграмм, формул и пр.), оценивать адекватность построенной модели объекту-оригиналу и целям моделирования;
- записывать на изучаемом языке программирования (Паскаль) алгоритмы решения простых задач обработки одномерных массивов;
- использовать основные приёмы обработки информации в электронных таблицах;
- работать с формулами;
- визуализировать соотношения между числовыми величинами;
- анализировать доменные имена компьютеров и адреса документов в Интернете;
- осуществлять поиск информации в готовой базе данных;
- основам организации и функционирования компьютерных сетей;
- составлять запросы для поиска информации в Интернете;
- использовать приемы безопасной организации своего личного пространства данных с использованием индивидуальных накопителей данных, интернет-сервисов и т.п.;
- соблюдать этические нормы при работе с информацией и выполнять требования законодательства РФ в информационной сфере.

В результате изучения информатики в 9 классе ученик получит возможность:

- сформировать представление о моделировании как методе научного познания; о компьютерных моделях и их использовании для исследования объектов окружающего мира;
- познакомиться с примерами использования графов и деревьев при описании реальных объектов и процессов;
- познакомиться с примерами математических моделей и использования компьютера при их анализе; понять сходства и различия между математической моделью объекта и его натурной моделью, между математической моделью объекта/явления и словесным описанием;
- научиться строить математическую модель задачи выделять исходные данные и результаты, выявлять соотношения между ними;
- исполнять записанные на алгоритмическом языке циклические алгоритмы обработки одномерного массива чисел (суммирование всех элементов массива; суммирование элементов массива с определёнными индексами; суммирование элементов массива, с заданными свойствами; определение количества элементов массива с заданными свойствами; поиск наибольшего/ наименьшего элементов массива и др.);
- научиться проводить обработку большого массива данных с использованием средств электронной таблицы;

- расширить представления о компьютерных сетях распространения и обмена информацией, об использовании информационных ресурсов общества с соблюдением соответствующих правовых и этических норм, требований информационной безопасности;
- научиться оценивать возможное количество результатов поиска информации в Интернете, полученных по тем или иным запросам;
- закрепить представления о требованиях техники безопасности, гиены, эргономики и ресурсосбережения при работе со средствами информационных и коммуникационных технологий.

2. Содержание учебного предмета

Раздел «Технологические основы информатики»

Компьютер — универсальное устройство обработки данных. Архитектура компьютера: процессор, оперативная память, внешняя энергонезависимая память, устройства ввода-вывода; их количественные характеристики. История и тенденции развития компьютеров, улучшение характеристик компьютеров. Компьютеры, встроенные в технические устройства и производственные комплексы. Суперкомпьютеры.

Состав и функции программного обеспечения компьютера: системное программное обеспечение, прикладное программное обеспечение, системы программирования. Правовые нормы использования программного обеспечения.

Файловая система. Долговременное хранение данных в компьютере. Файловая система. Принципы построения файловых систем. Каталог (директория). Основные операции при работе с файлами: создание, редактирование, копирование, перемещение, удаление. Типы файлов.

Графический пользовательский интерфейс (рабочий стол, окна, диалоговые окна, меню). Оперирование компьютерными информационными объектами в наглядно-графической форме: создание, именование, сохранение, удаление объектов, организация их семейств. Архивирование и разархивирование. Файловый менеджер. Компьютерные вирусы и защита от них.

Техника безопасности и правила работы на компьютере.

Раздел «Математические основы информатики»

Информация и информационные процессы. Информация — одно из основных понятий современной науки. Информация и данные. Информационные процессы — процессы, связанные с хранением, преобразованием и передачей информации. Примеры информационных процессов в системах различной природы.

Хранение информации. Носители информации (бумажные, магнитные, оптические, флешпамять). Характеристики современных носителей информации. Хранилища информации. Сетевое хранение информации.

Передача информации. Источник, информационный канал, приемник информации. Скорость передачи информации.

Обработка информации. Обработка, связанная с получением новой информации. Обработка, связанная с изменением формы, но не изменяющая содержание информации. Поиск информации. Поиск информации в Интернете.

Элементы комбинаторики. Расчет количества вариантов: формулы перемножения и сложения количества вариантов.

Представление информации. Формы представления ин — конечное множество символов; мощность алфавита. Текст — конечная последовательность символов данного алфавита. Количество различных текстов данной длины в данном алфавите.

Язык как способ представления информации. Разнообразие языков и алфавитов. Естественные и формальные языки. Кодирование символов одного алфавита с помощью кодовых слов в другом алфавите; кодовая таблица, декодирование.

Двоичный алфавит. Двоичный код. Двоичные коды с фиксированной длиной кодового слова. Разрядность двоичного кода. Связь длины (разрядности) двоичного кода и количества кодовых комбинаций.

Единицы измерения длины двоичных текстов: бит, байт, килобайт и т. д. Количество информации, содержащееся в сообщении.

Системы счисления. Позиционные и непозиционные системы счисления. Примеры представления чисел в позиционных системах счисления. Основание системы счисления. Алфавит (множество цифр) системы счисления. Количество цифр, используемых в системе счисления с заданным основанием. краткая и развернутая формы записи чисел в позиционных системах счисления.

Двоичная система счисления. Запись целых чисел в пределах от 0 до 1024 в двоичной системе счисления. Перевод натуральных чисел из двоичной системы счисления в десятичную. Сравнение двоичных чисел. Двоичная арифметика. Элементы математической логики. Высказывания. Простые и сложные высказывания. Логические значения высказываний. Логические выражения. Логические операции: «и» (конъюнкция, логическое умножение), «или» (дизьюнкция, логическое сложение), «не» (логическое отрицание). Правила записи логических выражений. Приоритеты логических операций.

Таблицы истинности. Построение таблиц истинности для логических выражений.

Элементы теории множеств. Множество. Определение количества элементов во множествах, полученных из двух или трёх базовых множеств с помощью операций объединения,

пересечения и дополнения. Диаграммы Эйлера—Венна. Моделирование как метод познания. Модели и моделирование.

Этапы построения информационной модели. Оценка адекватности модели моделируемому объекту и целям моделирования. Классификация информационных моделей.

Графы. Граф. Вершина, ребро, путь. Ориентированные и неориентированные графы. Начальная вершина (источник) и конечная вершина (сток) в ориентированном графе. Длина (вес) ребра и пути. Понятие минимального пути. Матрица смежности графа (с длинами ребер).

Дерево. Корень, лист, вершина. Поддерево. Высота дерева. Уровень вершины.

Математическое моделирование. Понятие математической модели. Задачи, решаемые с помощью математического (компьютерного) моделирования. Отличие математической модели от натурной модели и от словесного (литературного) описания объекта. Использование компьютеров при работе с математическими моделями.

Компьютерные эксперименты. Примеры использования математических (компьютерных) моделей при решении научно-технических задач. Представление о цикле моделирования: построение математической модели, ее программная реализация, проверка на простых примерах (тестирование), проведение компьютерного эксперимента, анализ его результатов, уточнение модели.

Раздел «Алгоритмы и программирование»

Исполнители и алгоритмы. Управление исполнителями. Исполнители. Состояния, возможные обстановки и система команд исполнителя; команды-приказы и команды-запросы; отказ исполнителя. Необходимость формального описания исполнителя. Ручное управление исполнителем.

Алгоритм как план управления исполнителем (исполнителями). Свойства алгоритмов. Алгоритмический язык (язык программирования) — формальный язык для записи алгоритмов. Программа — запись алгоритма на конкретном алгоритмическом языке. Компьютер — автоматическое устройство, способное управлять по заранее составленной программе исполнителями, выполняющими команды. Программное управление исполнителем.

Словесное описание алгоритмов. Описание алгоритма с помощью блок-схем. Отличие словесного описания алгоритма, от описания на формальном алгоритмическом языке.

Алгоритмические конструкции. Конструкция «следование». Линейный алгоритм.

Конструкция «ветвление»: полная и неполная формы. Выполнение и невыполнение условия (истинность и ложность высказывания). Простые и составные условия. Запись составных условий.

Конструкция «повторение»: циклы с заданным числом повторений, с условием выполнения.

Управление. Сигнал. Обратная связь. Примеры: компьютер и управляемый им исполнитель (в том числе робот); компьютер, получающий сигналы от цифровых датчиков в ходе наблюдений и экспериментов, и управляющий реальными (в том числе движущимися) устройствами.

Язык программирования (Паскаль, школьный алгоритмический язык). Идентификаторы. Константы и переменные. Типы констант и переменных: целый, вещественный, символьный, строковый, логический.

Основные правила языка программирования: структура программы; правила представления данных; правила записи основных операторов (ввод, вывод, присваивание, ветвление, цикл). Разработка алгоритмов и программ на изучаемом языке программирования. Составление алгоритмов и программ по управлению исполнителями.

Примеры задач обработки данных: нахождение минимального и максимального числа из двух, трех, четырех данных чисел; нахождение всех корней заданного квадратного уравнения.

Приемы диалоговой отладки программ (выбор точки останова, пошаговое выполнение, просмотр значений величин, отладочный вывод).

Анализ алгоритмов. Определение возможных результатов работы алгоритма при данном множестве входных данных; определение возможных входных данных, приводящих к данному результату.

Разработка алгоритмов и программ на языке программирования Паскаль. Табличный тип данных (массив). Примеры задач обработки данных: заполнение числового массива в соответствии с формулой или путем ввода чисел; нахождение суммы элементов данной конечной числовой последовательности или массива; нахождение минимального (максимального) элемента массива. Знакомство с алгоритмами решения этих задач. Реализации этих алгоритмов на изучаемом языке программирования из приведенного выше перечня.

Конструирование алгоритмов: разбиение задачи на подзадачи, понятие вспомогательного алгоритма. Вызов вспомогательных алгоритмов. Составление алгоритмов и программ по управлению исполнителями Робот, Черепашка, Чертежники др.

Понятие об этапах разработки программ: составление требований к программе, выбор алгоритма и его реализация в виде программы на выбранном алгоритмическом языке, отладка программы с помощью выбранной системы программирования, тестирование.

Анализ алгоритмов. Определение возможных результатов работы алгоритма для исполнителей Робот, Черепашка, Чертежник при заданной исходной обстановке; выявление возможных входных данных, приводящих к данному результату.

Раздел «Использование программных систем и сервисов»

Обработка текстовой информации. Текстовые документы и их структурные элементы (страница, абзац, строка, слово, символ). Текстовый процессор — инструмент создания, редактирования и форматирования текстов. Свойства страницы, абзаца, символа. Стилевое форматирование. Включение в текстовый документ списков, таблиц и графических объектов. Включение в текстовый документ диаграмм, формул, нумерации страниц, колонтитулов, ссылок и др. История изменений. Проверка правописания, словари. Сохранение документа в различных текстовых форматах.

Инструменты ввода текста с использованием сканера, программ распознавания, расшифровки устной речи. Компьютерный перевод.

Компьютерное представление текстовой информации. Кодовые таблицы. Код ASCII. Кодировки кириллицы. Примеры кодирования букв национальных алфавитов. Представление о стандарте Unicode.

Обработка графической информации. Общее представление о цифровом представлении изображений. Кодирование

цвета. Цветовые модели. Модель RGB. Глубина кодирования. Компьютерная графика (растровая, векторная). Форматы графических файлов. Оценка количественных параметров, связанных с представлением и хранением изображений.

Знакомство с графическими редакторами. Операции редактирования графических объектов: изменение размера, сжатие изображения; обрезка, поворот, отражение, работа с областями (выделение, копирование, заливка цветом), коррекция цвета, яркости и контрастности.

Ввод изображений с использованием различных цифровых устройств (цифровых фотоаппаратов и микроскопов, видеокамер, сканеров и т. д.).

Мультимедиа. Понятие технологии мультимедиа и области ее применения. Подготовка компьютерных презентаций. Дизайн презентации и макеты слайдов. Звук и видео как составляющие мультимедиа. Включение в презентацию аудиовизуальных объектов.

Базы данных. Базы данных. Таблица как представление отношения. Поиск данных в готовой базе.

Электронные (динамические) таблицы. Электронные (динамические) таблицы. Формулы с использованием абсолютной, относительной и смешанной адресации; преобразование формул при копировании. Выделение диапазона таблицы и упорядочивание (сортировка) его элементов; построение графиков и диаграмм.

Компьютерные сети. Компьютерные сети. Интернет. Скорость передачи информации. Пропускная способность канала. Передача информации в современных системах связи. Адресация в Интернете. Доменная система имен.

Работа в информационном пространстве. Виды деятельности в Интернете. Интернет сервисы: почтовая служба; справочные службы, поисковые службы, службы обновления программного обеспечения и др.

Поиск информации в Интернете. Средства и методика поиска информации. Построение запросов; браузеры. Компьютерные энциклопедии и словари. Компьютерные карты и другие справочные системы.

Рекомендации, повышающие безопасность работы в Интернете. Методы индивидуального и коллективного размещения новой информации в Интернете. Сайт. Взаимодействие на основе компьютерных сетей: электронная почта, чат, форум, телеконференция и др. Базовые представления о правовых и этических аспектах работы в Интернете. Личная информация, способы ее защиты.

3. Тематическое планирование

8 класс

Темы	Количество часов.
Введение	1
Математические основы информатики	12
Основы алгоритмизации	10
Начала программирования	10
Итоговое повторение	1
Итого	34

9 класс

Темы	Количество часов.
Введение	1
Моделирование и формализация	8
Алгоритмизация и программирование	8
Обработка числовой информации	6
Коммуникационные технологии	10
Итоговое повторение	1
Итого	34